Vector space framework for unification of one- and multidimensional filter bank theory
نویسندگان
چکیده
Abstrucf-A number of results in filter bank theory can be viewed using vector space notations. This simplifies the proofs of many important results. In this paper, we first introduce the framework of vector space, and then use this framework to derive some known and some new filter bank results as well. For example, the relation among the Hermitian image property, orthonormality, and the perfect reconstruction (PR) property is well-known for the case of one-dimensional (1-D) analysis/synthesis filter banks [l]. We can prove the same result in a more general vector space setting. This vector space framework has the advantage that even the most general filter banks, namely, multidimensional nonuniform fil ter banks with rational decimation matrices, become a special case. Many results in 1-D filter hank theory are hence extended to the multidimensional case, with some algebraic manipulations of integer matrices. Some examples are: the equivalence of biorthonormality and the PR property, the interchangeability of analysis and synthesis filters, the connection between analysis/synthesis filter banks and synthesis/analysis transmultiplexers, etc. Furthermore, we obtain the subband convolution scheme by starting from the generalized Parseval's relation in vector space. Several theoretical results of wavelet transform can also be derived using this framework. In particular, we derive the wavelet convolution theorem.
منابع مشابه
Unsupervised Texture Segmentation via Applying Geodesic Active Regions to Gaborian Feature Space
In this paper, we propose a novel variational method for unsupervised texture segmentation. We use a Gabor filter bank to extract texture features. Some of the filtered channels form a multidimensional Gaborian feature space. To avoid deforming contours directly in a vector-valued space we use a Gaussian mixture model to describe the statistical distribution of this space and get the boundary a...
متن کاملMultidimensional Multirate Systems: Characterization, Design, and Applications
Multidimensional multirate systems have been used widely in signal processing, communications, and computer vision. Traditional multidimensional multirate systems are tensor products of one-dimensional systems. While these systems are easy to implement and design, they are inadequate to represent multidimensional signals since they cannot capture the geometric structure. Therefore, “true” multi...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملThe Projection Method for Multidimensional Framelet and Wavelet Analysis
The projection method is a simple way of constructing functions and filters by integrating multidimensional functions and filters along parallel superplanes in the space domain. Equivalently expressed in the frequency domain, the projection method constructs a new function by simply taking a cross-section of the Fourier transform of a multidimensional function. The projection method is linked t...
متن کاملMultidimensional Filter Banks and Multiscale Geometric Representations
Thanks to the explosive growth of sensing devices and capabilities, multidimensional (MD) signals — such as images, videos, multispectral images, light fields, and biomedical data volumes — have become ubiquitous. Multidimensional filter banks and the associated constructions provide a unified framework and an efficient computational tool in the formation, representation, and processing of thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 42 شماره
صفحات -
تاریخ انتشار 1994